
CIS 422/522 Fall 2011! 1!

From Module Decomposition to
Interface Specification !

Documenting module structure!
Specifying module interfaces!
Module interface design!

CIS 422/522 Fall 2011! 2!

Architecture Development Process!

Building architecture to address business goals:!
1.  Understand the goals for the system!
2.  Define the quality requirements!
3.  Design the architecture!

1.  Views: which architectural structures should we use?!
2.  Documentation: how do we communicate design decisions?!
3.  Design: how do we decompose the system?!

4.  Evaluate the architecture (is it a good design?)!

CIS 422/522 Fall 2011! 3!

Examples of Key Architectural
Structures!

•  Module Structure!
–  Decomposition of the system into work

assignments or information hiding modules!
–  Most influential design time structure!

•  Modifiability, work assignments, maintainability,
reusability, understandability, etc.!

•  Uses Structure!
–  Determine which modules may use one anotherʼs

services!
–  Determines subsetability, ease of integration!

CIS 422/522 Fall 2011! 4!

Modularization!

•  For large, complex software, must divide the
development into work assignments (WBS).
Each work assignment is called a “module.”!

•  Properties of a “good” module structure!
–  Parts can be designed independently!
–  Parts can be tested independently!
–  Parts can be changed independently!
–  Integration goes smoothly!

CIS 422/522 Fall 2011! 5!

Modular Structure!
•  Comprises components, relations, and interfaces!
•  Components!

–  Called modules!
–  Leaf modules are work assignments!
–  Non-leaf modules are the union of their submodules!

•  Relations (connectors)!
–  submodule-of => implements-secrets-of!
–  The union of all submodules of a non-terminal module must

implement all of the parent moduleʼs secrets!
–  Constrained to be acyclic tree (hierarchy)!

•  Interfaces (externally visible component behavior)!
–  Defined in terms of access procedures (services or method)!
–  Only external (exported) access to internal state!

CIS 422/522 Fall 2011! 6!

Decomposition Criteria!
•  Principle: information hiding!

–  System details that are likely to change independently
should be encapsulated in different modules.!

–  The interface of a module reveals only those aspects
considered unlikely to change.!

•  What do I do next?!
–  For each module, determine if its secret contains information

that is likely to change independently!
•  Stopping criteria!

–  Each module is simple enough to be understood fully!
–  Each module is small enough that it makes sense to throw it

away rather than re-do.!

CIS 422/522 Fall 2011! 7!

Module Hierarchy!
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules = !
Work

assignments!

CIS 422/522 Fall 2011! 8!

Method of Communication!
Module Guide!

–  Documents the module structure:!
•  The set of modules!
•  The responsibility of each module in terms of the

moduleʼs secret!
•  The “submodule-of relationship”!
•  The rationale for design decisions !

–  Document purpose(s)!
•  Guide for finding the module responsible for some aspect

of the system behavior!
– Where to find or put information!
– Determine where changes must occur!

•  Baseline design document!
•  Provides a record of design decisions (rationale)!

CIS 422/522 Fall 2011! 9!

Method of Communication!
Module Interface Specifications!

–  Documents all assumptions userʼs can make about the
moduleʼs externally visible behavior (of leaf modules)!

•  Access programs, events, types, undesired events!
•  Design issues, assumptions!

–  Document purpose(s)!
•  Provide all the information needed to write a moduleʼs

programs or use the programs on a moduleʼs interface
(programmerʼs guide, userʼs guide)!

•  Specify required behavior by fully specifying behavior of the
moduleʼs access programs!

•  Define any constraints!
•  Define any assumptions!
•  Record design decisions!

CIS 422/522 Fall 2011! 10!

The FWS Module Structure!

An overly simplified example!

CIS 422/522 Fall 2011! 11!

Floating Weather Stations (FWS)!
Floating weather stations (FWS) are buoys that float at sea and that are equipped with
sensors to monitor weather conditions. Each FWS has an on-board computer that
maintains a history of recent weather data. At regular intervals the buoy transmits the
weather data using a radio transmitter.!
 !
The initial prototype for the buoy will measure the wind speed in knots. The buoys will
use four small wind speed sensors (anemometers): two high-resolution sensors and two,
less expensive, low-resolution sensors. !
 !
Accuracy is software enhanced by computing a weighted-average of the sensor readings
over time. Each sensor is read once every second with the readings averaged over four
readings before being transmitted. The calculated wind speed is transmitted every two
seconds.!
 !
Over the course of development and in coming versions, we anticipate that the hardware
and software will be routinely upgraded including adding additional types of sensors (e.g.
wave height, water temperature, wind direction, air temperature). A system that can be
rapidly revised to accommodate new features is required.!
!

CIS 422/522 Fall 2011! 12!

FWS Likely Changes!

Likely changes 
Behavior!

C 1. The formula used for computing wind speed from the sensor readings may vary. In
particular, the weights used for the high resolution and low resolution sensors may vary, and the
number of readings of each sensor used (the history of the sensor) may vary.!
C2. The format of the messages that an FWS sends may vary.  
C3. The transmission period of messages from the FWS may vary. 
C4. The rate at which sensors are scanned may vary.!
 !
Devices!
C4. The number and types of wind speed sensors on a FWS may vary.!
C5. The resolution of the wind speed sensors may vary.!
C6. The wind speed sensor hardware on a FWS may vary.!
C7. The transmitter hardware on a FWS may vary.!
C8. The method used by sensors to indicate their reliability may vary.!

CIS 422/522 Fall 2011! 13!

Classifying Changes!

•  Three classes of change!
–  hardware!

•  new devices!
•  new computer!

–  required behavior!
•  new functions!
•  new rules of computing values!
•  new timing constraints!

–  software decisions!
•  new ways to represent data types!
•  different algorithms or data structures!

From  
Requirements  
Specification!

CIS 422/522 Fall 2011! 14!

Top-Level Module Decomposition!

•  Device Interface (DI)!
–  Secret = properties of physical

hardware!
–  Encapsulates any hardware

changes!
•  Behavior-Hiding (BH)!

–  Secret = algorithms/data
addressing requirements!

–  Encapsulates requirements
changes!

•  Software Decision (SD)!
–  Secret = decisions by designer!
–  Encapsulates internal design

decisions!

Device Interface

Behavior Hiding

Software Decision

CIS 422/522 Fall 2011! 15!

DI Submodules!

•  Windspeed Sensor Driver!
–  Service: provides access wind

speed values!
–  Secrets: Anything that would

change if the current wind speed
sensor were replaced with
another. For example, the
details of data formats and how
to communicate with the sensor!

•  Transmitter Driver!
–  Service: transmit given data on

request!
–  Secrets: details of transmitter

hardware!

Device Interface

Windspeed Sensor
Driver

Transmitter
Driver

CIS 422/522 Fall 2011! 16!

FWS Modular Structure!
FWS!

Behavior  
Hiding!

Device  
Interface!

Software  
Decision!

Sensor  
Driver!

Transmitter  
Driver!

Controller! Message  
Generation!

Message  
Format!

Sensor  
Monitor!

Data  
Banker! Averager!

Submodule-of! Encapsulates all changes  
to the message format!

Encapsulates all changes  
if transmitter protocol changes!

Module!

CIS 422/522 Fall 2011! 17!

Module Guide!

•  The module structure is documented in a module guide!
•  Contents describe:!

–  The set of modules!
–  The responsibility of each module in terms of the moduleʼs

secret!
–  The “submodule-of relationship”!
–  The rationale for design decisions !

•  Document purposes!
–  Orientation for new team members!
–  Guide for finding the module responsible for some aspect of the

system behavior!
•  Where to find or put information!
•  Determine where changes must occur!

–  Baseline design document!
–  Provides a record of design decisions (rationale)!

CIS 422/522 Fall 2011! 18!

Excerpts From The FWS Module Guide (1)!

1.  Behavior Hiding Modules!
The behavior hiding modules include programs that need to be changed if the
required outputs from a FWS and the conditions under which they are produced
are changed. Its secret is when (under what conditions) to produce which
outputs. Programs in the behavior hiding module use programs in the Device
Interface module to produce outputs and to read inputs.!
1.1 Controller!
Service!
Provide the main program that initializes a FWS.!
Secret!
How to use services provided by other modules to start and maintain the proper
operation of a FWS.!
!

CIS 422/522 Fall 2011! 19!

Excerpts From The FWS Module Guide (2)!

2.  Device Interface Modules!
!The device interface modules consist of those programs that need to be changed if the input
from hardware devices to FWSs or the output to hardware devices from FWSs change. The
secret of the device interface modules is the interfaces between FWSs and the devices that
produce its inputs and that use its output.!

!!
2.1. Wind Sensor Device Driver!
!Service!
!Provide access to the wind speed sensors. There may be a submodule for each sensor type.!
!Secret!
!How to communicate with, e.g., read values from, the sensor hardware.!
!Note!
!This module hides the boundary between the FWS domain and the sensors domain. The
boundary is formed by an abstract interface that is a standard for all wind speed sensors.
Programs in this module use the abstract interface to read the values from the sensors.!

CIS 422/522 Fall 2011! 20!

Module Structure Accomplishments!

•  What have we accomplished in creating the
module structure?!

•  Divided the system into parts (modules) such that!
–  Each module is a work assignment for a person or

small team!
–  Each part can be developed independently!
–  Every system function is allocated to some module!

•  Informally described each module!
–  Services: services that the module implements that

other modules can use!
–  Secrets: implementation decisions that other modules

should not depend on!

CIS 422/522 Fall 2011! 21!

Specifying Abstract Interfaces!

CIS 422/522 Fall 2011! 22!

Method of Communication!
Module Interface Specifications!

–  Documents all assumptions userʼs can make about the
moduleʼs externally visible behavior (of leaf modules)!

•  Access programs, events, types, undesired events!
•  Design issues, assumptions!

–  Document purpose(s)!
•  Provide all the information needed to write a moduleʼs

programs or use the programs on a moduleʼs interface
(programmerʼs guide, userʼs guide)!

•  Specify required behavior by fully specifying behavior of the
moduleʼs access programs!

•  Define any constraints!
•  Define any assumptions!
•  Record design decisions!

CIS 422/522 Fall 2011! 23!

Need for Precise Interface Specifications!

•  But, informal description is not enough to write
the software!

•  To support independent, distributed
development, need a precise interface
specification!
–  For the implementer: describes the requirements the

module must satisfy!
–  For other developers: defines everything you need to

know to use the moduleʼs services correctly!
–  For tester: specifies the range of acceptable behaviors

for unit test!
•  The interface specification defines a contract

between the moduleʼs developers and its users!

CIS 422/522 Fall 2011! 24!

A Simple Stack Module!

•  A simple integer stack!
•  The interface specifies what a

programmer needs to know to use
the stack correctly, e.g.!

–  push: push integer on stack top!
–  pop: remove top element!
–  peek: get value of top element!

•  The secrets (encapsulated) any
details that might change from one
implementation to another!

–  Data structures, algorithms!
–  Details of class/object structure!

•  Is this enough to define a
contract?!

stack
peek(int)

push(int)

pop()

CIS 422/522 Fall 2011! 25!

What is an abstract interface?!

•  An abstract interface defines the set of
assumptions that one module can make about
another!

•  While detailed, an abstract interface specification
does not describe the implementation !
–  Does not specify algorithms, private data, or data

structures!
–  Preserves the moduleʼs secrets!

•  One-to-many: one abstract module specification
allows many possible implementations!
–  Developer is free to use any implementation that is

consistent with the interface!
–  Developer is free to change the implementation!

CIS 422/522 Fall 2011! 26!

Goals for Module Interface
Specifications!

•  Clearly documents the behavior of the module!
–  reduces time & knowledge required to adopt module!

•  Clearly documents the interfaces used by the
module !
–  Aids in creating stubs, mock interfaces and integration

test scripts!
•  Improves the ability to isolate errors quickly !
•  Defines implementerʼs work assignment!

–  Interface specification is essentially a contract for the
developer that specifies the implementerʼs task and the
assumptions that users can make!

•  Enables straight-forward mapping between use
case requirements and methods!

CIS 422/522 Fall 2011! 27!

A method for constructing abstract
interfaces!

•  Define services provided and services needed
(assumptions)!

•  Decide on syntax and semantics for accessing services!
•  In parallel !

–  Define access method effects!
–  Define terms and local data types!
–  Define states of the module!
–  Record design decisions!
–  Record implementation notes!

•  Define test cases and use them to verify access methods!
–  Cover testing effects, parameters, exceptions !
–  Test both positive and error use cases!
–  Support automation!
–  Design test cases before implementing module !

•  Can use Javadoc or similar!

CIS 422/522 Fall 2011! 28!

An FWS Example: The Data Banker
Interface Specification!

Define services provided!
!

CIS 422/522 Fall 2011! 29!

An FWS Example: The Data Banker Interface Specification!
Decide on syntax and semantics for accessing services!
Access Methods!
!
!

CIS 422/522 Fall 2011! 30!

An FWS Example: The Data Banker Interface Specification!
Decide on syntax and semantics for accessing services!
Access Method Semantics!
•  Values returned!
•  State changes!
•  Legal call sequences!
•  Synchronization and other call interactions!
!
!

CIS 422/522 Fall 2011! 31!

An FWS Example: The Data Banker
Interface Specification!

•  Decide on syntax and semantics for accessing services !
•  Local Data Types !

•  and Types Used!

CIS 422/522 Fall 2011! 32!

An FWS Example: The Data Banker
Interface Specification!

Define test cases and use them to verify access method!
Example!

!

CIS 422/522 Fall 2011! 33!

An FWS Example: The Data Banker
Interface Specification!

Record design decisions!

Interface Design Issues !
1, Should we let the user read an empty vector of sensor readings after

initialization, or just throw an exception?!
A1. Yes. An empty vector should be treated just as any other.!
A2. No. There are no valid values in an empty vector that can be

averaged, so we should let he user know that the vector is empty by
throwing the exception.!

Resolution: Yes. We will check values during testing to save space and
CPU cycles.!

!

CIS 422/522 Fall 2011! 34!

Using Javadoc

CIS 422/522 Fall 2011! 35!
35 © S. Faulk 2010

CIS 422/522 Fall 2011! 36!

Benefits Good Module Specs !

•  Enables development of complex projects:!
–  Support partitioning system into separable modules !
–  Complements incremental development approaches !

•  Improves quality of software deliverables:!
–  Clearly defines what will be implemented!
–  Errors are found earlier !
–  Error Detection is easier!
–  Improves testability!

•  Defines clear acceptance criteria!
•  Defines expected behavior of module!
•  Clarifies what will be easy to change, what will be

hard to change !
•  Clearly identifies work assignments!

CIS 422/522 Fall 2011! 37!

Interface Design!

Considerations in interface design!
Design principles!
Role of information hiding and abstraction!

CIS 422/522 Fall 2011! 38!

Module Interface Design Goals!

General goals addressed by module interface design!
1.  Control dependencies!

–  Encapsulate anything other modules should not depend on!
–  Hide design decisions and requirements that might change

(data structures, algorithms, assumptions)!
2.  Provide services!

–  Provide all the capabilities needed by the moduleʼs users!
–  Provide only what is needed (complexity)!
–  Provide problem appropriate abstraction (useful services and

states)!
–  Provide reusable abstractions!

•  Specific goals need to be captured (e.g., in the
module guide and interface design documents)!

CIS 422/522 Fall 2011! 39!

1. Controlling Dependencies!

•  Addressed using the principle of information hiding!
•  IH: design principle of limiting dependencies between

components by hiding information other components
should not depend on!

•  When thinking about what to put on the interface!
–  Design the module interface to reveal only those design

decisions considered unlikely to change!
–  Required functionality allocated to the module and

considered likely to change must be encapsulated!
–  Each data structure is used in only one module!
–  Any other program must access internal data by calling

access programs on the interface!
•  Consistent with good OOD principles!

39

CIS 422/522 Fall 2011! 40!

2. Provide Services!

•  Interface provides the capabilities of the
module to other modules in the system,
addressed by:!

•  Abstraction: interface design principle of
providing only essential information and
suppressing unnecessary detail!

CIS 422/522 Fall 2011! 41!

Abstraction!

•  Two primary uses!
•  Reduce Complexity!

–  Goal: manage complexity by reducing the amount of
information that must be considered at one time!

–  Approach: Separate information important to the problem at
hand from that which is not!

–  Abstraction suppresses or hides “irrelevant detail”!
–  Examples: stacks, queues, abstract device!

•  Model the problem domain!
–  Goal: leverage domain knowledge to simplify understanding,

creating, checking designs!
–  Approach: Provide components that make it easier to model

a class of problems!
•  May be quite general (e.g., type real, type float)!
•  May be very problem specific (e.g., class automobile, book object)!

CIS 422/522 Fall 2011! 42!

Example: Car Object!

•  What are the abstractions?!
–  Purpose of each?!

•  What information is hidden?!

CIS 422/522 Fall 2011! 43!

Which Principle to Use!

•  Use abstraction when the issue is what
should be on the interface (form and content)!

•  Use information hiding when the issue is what
information should not be on the interface
(visible or accessible)!

CIS 422/522 Fall 2011! 44!

Summary!

•  Every module has an abstract interface that provides
a way for other modules to use its secret without
knowing how the secret is implemented!

•  An interface is the set of assumptions that the users
of a module can make about the module!

•  The interface specification for a module is a contract
between the users of the module and the
implementers of a module!

•  An abstract interface specification specifies both
syntax and semantics for the interface!

•  There is a systematic process for developing
interface specifications!

CIS 422/522 Fall 2011! 45!

Questions!

CIS 422/522 Fall 2011! 46!

Assignment!

•  For Thursday!
–  Standup report in class (no slides): status of major

deliverables!
–  Schedule project status meeting with instructor!

•  To do: make sure I have a link to your current assembla
site!

